CHAPTERSS

MIXED FINITE ELEMENT FORMULATION
FOR THE SMEARED CRACK MODEL

In order to determine the stability of crack patterns, it is necessary to obtain
the second variation of energy of the system with respect to irreversible crack
variables. In other words, the stability of the equilibrium with respect to irreversible
crack variables must be investigated. If the smeared crack model is used in the
analysis, the irreversible crack variable is the crack strain. However, in the smeared
crack model, the crack strain is not discretized and is actually a function of position.
Therefore, it is difficult to perform the stability analysis with respect to this non-
discretized variable. To circumvent this problem, a mixed formulation that discretizes
not only the displacement field but also the crack strain field can be used (Nanakorn
and Soparat 2000). The discretized crack strain variable will allow the stability of the
system with respect to the irreversible crack strain to be done easily and efficiently.

5.1 The Mixed Finite Element Formulation

By following Nanakorn and Soparat (2000), the total potential energy increment
of a cracked domain ¥V is expressed as

ATT = ATTM + ATTP
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The total potential energy increment AIT shown above consists of two parts that
are the mechanical potential energy increment AT and the dissipated energy

increment AIT? . Here, Au denotes the displacement increment vector. In addition,
Af and At are the body force increment vector and the surface traction increment
vector, respectively. By substituting Egs. (3.6) and (3.9) into Eq. (5.1), the total
potential energy increment is written as

ATT = ATT + ATT?
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In the expression of the total potential energy increment in Eq. (5.2), the
irreversible variable that has to be considered in the stability analysis is the local crack

strain increment AE” . The first variation of the energy increment with respect to this
local crack strain increment results in the equilibrium path. The second variation will
give the information on the stability condition of the obtained equilibrium path. Since
the total energy increment is a functional of the crack strain increment function, the
calculus of variations is required. To avoid this difficulty, a mixed formulation in the
finite element method by discretizing both displacement increment field and the local
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Fig. 5.1 A problem with one cracked element surrounded by
intact elastic elements (Nanakorn and Soparat 2000)

crack strain increment field is employed. For the i™ element in the finite element
analysis, we have

Au =NAU (5.3a)
AT =NTAE (5.3b)

where N and N represent the shape function matrices for the dlsplacement increment

and the local crack strain increment, respectively. Moreover, AU and A’E® represent
the nodal displacement increment and the nodal crack strain increment, respectively.
Note that the local crack strain increments are not continuous across elements and the
nodal local crack strain increments of the same node for different elements can be
different. One example is a problem with one cracked element surrounded by
uncracked elements (see Fig. 5.1). In the cracked element including its boundary, non-
zero crack strain increments can be expected. However, in the surrounding uncracked
elements, the crack strain increments are expected to be zero because there is no crack
in those elements. On the contrary, the total displacement increments must be
continuous across all elements.

Substituting Eq. (3.1) in Eq. (5.2), we write the total energy increment for the it
element as

AH=%I(A8 Ae” | D°(As—Ae” JdV + = jA"" DAV
(5.4)
~ [au” AfdV — [Au” ArdS
14 S
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From Egs. (3.3) and (5.3), the total strain increment and the global crack strain
increment are expressed as

Ae =BAU, (5.6a)
A'e” = TN“A'ET . (5.6b)

From Egs. (3.1), (5.4) and (5.6), the total potential energy increment can be
expressed as

ALl = % [a'uTB"D*BAUAY -% [A'UTBTD INT AR dY
14
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Applying the stationary condition & (AII)= 0 to Eq. (5.7) and assuming that D’
and D are symmetry, we get

5(arT)= 5(A'U") [BTDBAVA'U - 5(A'U” ) [BTD TN dVA'E"
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+ 5(A"1§:"T ) [NT"DNTava'E” - 5(AT0T) [N Atav (5.8)
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Since & (AiUT) and J(AiEC’T) are arbitrary, we obtain the element stiffness

equation for the i™ element is obtained as

JBTDoBdV - ,JBTDOTNcrdV {A"U ) J‘NT AV + [NTAtds
- [N""T'D°Bay [N (D" + T'D°T)N"aV A"ﬁ:"}" g 0’ '

14 14
(5.9)

After assembling all element stiffness equations and applying prescribed
displacements and forces, the system stiffness equation can be arranged as

b= (5.10)
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where AU and AE“ are the nodal displacement increment and the nodal local crack
strain increment of the system, respectively.

The static condensation is then used to remove the nodal displacement
increment from the obtained system stiffness equation. Consequently, the equation
can be written in the following form, i.e.,

K“AE” = AR (5.11)

where K and AR are
K" =K, -KyKjjKp, (5.12a)
AR” =K, K;]AR,. (5.12b)

In the consideration of stability of crack patterns, the eigenvalue analysis of
K? is performed. If all the eigenvalues are positive, it means that the stationary
solution in Eq.(5.10) is stable with respect to the current crack pattern. Otherwise, the
stationary solution is unstable and bifurcation occurs. Note that this scheme is only
used for stability analysis of crack patterns, not for obtaining the displacement
solution. The displacement solution will be obtained from the original smeared crack
model where the basic unknowns are the nodal displacement increments.

The expression of the total potential energy increment in Eq. (5.1) which is used
in the derivation of the mixed finite element formulation is actually the same as the

conventional expression used for the conventional smeared crack finite element
analysis which is written as

ATT =% [Ae"DAedY - [Au” AfdS - [Au" AtdY . (5.13)
v 14 14

To show that Eqgs. (5.1) and (5.13) are in fact the same, we substitute Egs. (3.6)
and (3.9) into Eq. (5.1) to obtain
AIT = ATTY + ATT?

4&1“051@@4@/_ [AnTAfqy - | A--TA*dS]J-[l f ASC’Tﬁ?fAécrdVl
14 vV ) S

14

(5.14)
By substituting Eq. (3.1) into Eq. (5.14), the equation becomes
,’ T oAdV_, T oAcrdV_ o’ oAdV
v v v
[_F | el DA crdV+ | o cr crdV (515)
v v
| TA dS -~ | TA
S v
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Transforming the global crack strain increment Ag” to the local crack strain
increment Ag” by applying Eq. (3.3) to Eq. (5.15), we get

: jAaTD"AadV - jAaTD"TAé"dV - jAé”TTTD”AadV
AH =—\V 174 1
2 ~crm [(Ner Tyao Acr
+ 487 (D +T'D T peay (5.16)
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S 14

Applying Eq. (3.12) to Eq. (5.16), we have

ATI = % fae” (D" ~DT(H + TDT) 17D Jpeay
4

(5.17)
~ [Au” AfdS - [Au” AtaV.
S 14
From Eq.(3.13), the total potential energy increment becomes
1 Ty T T
ATl = [Ae"DAedV — [Au” AfdS — [Au” AtaV
27 v d (5.18)

-1 [Ae" Aody ~ [Au” AfdS - [Au” AtdV
2 14 14 14
which is the same equation as Eq. (5.13).

5.2 INlustrative Model

In order to illustrate the stability analysis method by using the mixed finite
element formulation, a simple uniaxial bar shown in Fig. 5.2 is considered. This bar

o Ac _ g
| f’v coD
cross-sectional area=4 Kloading path
< unloading path
Y VA/\_>
CoD

Fig. 5.2 Uniaxial problem using two 1-D elements
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Fig. 5.3 The shape function for a linear two-noded line element

has one fixed support at one end. At the other end, a controlled displacement # is
applied. The length of the bar is 2L and the cross-sectional area is A. The material is
assumed to be elastic with Young’s modulus equal to £. The bar is discretized into
two elements. Each element has the length equal to L. Fach element can
accommodate one crack. A crack is assumed to be inactive until the stress in a bar

reaches the tensile strength of the material f,. The characteristic length of each crack,

in this case, is equal to the length of the element. The conventional shape function is
used for the displacement interpolation (see Fig. 5.3).

Assume that the stress is zero at the beginning. After that, the controlled
displacement # is increased until the stress in the bar reaches the tensile strength /-
By the stress criterion for crack initiation, both elements are cracked. Consequently,
the cracks follow the constitutive law for cracks (see Fig. 5.2). For opening cracks, a
linear relationship between the transmitted tensile stress and the crack opening

displacement (COD) with the slope CAOOZ.) equal to H is assumed. This relationship is

called the tension-softening relationship. For each unloading crack, a vertical
unloading path with constant COD equal to the current COD is applied.

By consider an incremental step after the initiation of cracks, the element
stiffness of both elements can be written by using Eq. (5.9) as

[ AE AE AE AE
L L 2 2
_AE  AE _AE _4E
L I 2 2
K=\'4g  4E A(E +HL AE +HL ©.19)
2 2 3 6
AE  AE A(E +HL AE +HL
2 2 6 3]

where H =% =HL =HL . Here, L' tepresents the characteristic length of the
&

crack, which is equal to L for this problem.

After assembling all element stiffness equations, the system stiffness equation is
obtained as
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where AU, and AR, represent the nodal displacement increment and nodal force

increment of node i, respectively. Here, AiE]“.’ represents the nodal local crack strain
increment of node j and, at the same time, of element i. In this problem, AU,, AU,
and AR, are prescribed. Therefore, the equation can be reduced to

(2 _E _E £ £
_E (E+HL (E+HL o |[AU: a
L 3 6 _ A]E’f’ 0
A_% (E+6H)L (E+3H)L 0 0 A& | =4E; A0ZT +.(5.21)
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Performing the static condensation in Eq. (5.12) to remove AU,, we get the
stiffness equation in the form of Eq. (5.11) as

(SE+8H) (E+4H) 3E 3E NE EAu
AL| (E+4H) (SE+8H) 3E 3E NE _A|EnT (5.22)
24|  3E 3E (SE+8H) (E+4H) ||ANES| 4 |Eaum| ™
3E 3E (E+4H) (SE+8H)||AEY EAu

The eigenvalues of the obtained stiffness matrix K in the above equation are
AHL AE+H)L AE+HL and A(E+H)L
2 6 6 2
are positive if A >0 . This means that immediately after the two elements are

. It can be seen that all eigenvalues
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cracked, the equilibrium path is unstable and bifurcation occurs unless both cracks

exhibit hardening behavior (I-NI > 0). In reality, cracks will exhibit softening behavior.
Therefore, the two cracks cannot continue to open at the same time. One of the cracks
must undergo the elastic unloading.

Assume that the crack in element 2 undergoes unloading, the system stiffness
equation is changed into

E_E 4, E E
L I 2 2 \ \
_E 28 B E B AU (AR
I 1 L 2 2 ||au, | |aR,
E E
40 -2 = 0 0 AU p=iaR . (529)
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Following the same process of applying the prescribed boundary conditions and -
performing the static condensation, we obtain

; (5.24)

AL|(SE+8H) (E+4H) |[AE"| 4 [EAu
24| (E+4H) (SE+8H)||NES EAw|

and

The eigenvalues of the above stiffness matrix K are A(E+‘H)L

AE+2H)L
4
to undergo elastic unloading instead, the same result will be yielded.

. Both will be positive if H > _é;—' If the crack in element 1 is assumed

In summary, immediately after the two elements are cracked due to the strength
criterion employed, the equilibrium path is unstable and bifurcation occurs unless the
two cracks exhibits hardening behavior, i.e., when H > 0. In reality, cracks will
exhibit softening behavior. Therefore, the two cracks cannot continue to open at the
same time. If one of the cracks undergoes the elastic unloading, the stable equilibrium

path can be observed as long as HL > —g. As schematically shown in Fig. 5.4, the

cases where there is one opening crack and HL < 5 present the responses with

snapback behavior. Under the displacement control, snapback responses are always
unstable.
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Fig. 5.4 Schematic responses of the uniaxial problem
using one-dimensional bar elements
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